

ODOR | EXTRANEOUS WATER | ENGINEERING

WASTEWATER-TALK

International exchange

Episode 04 Feb. 2022

Indirect Discharger Investigation

Klaus Jilg & Siqi Tong

Schwerin | Rostock | Magdeburg | Bamberg | Stuttgart | Köln | Cottbus | Jena

Wastewater-talk

Wastewater-talk monthly new theme

International exchange

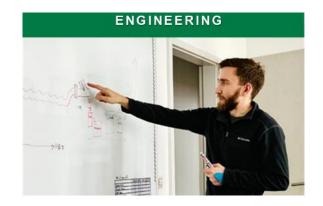
Wastewater is an issue that absolutely needs to be clarified

Klaus Jilg Expert on odor and other wastewater issues

- Exchange of knowledge in wastewater
- Passion sharing
- Get to know you!

Abwassertalk:

https://www.podcast.de/podcast/795779/abwassertalk


Schwerin | Rostock | Magdeburg | Bamberg | Stuttgart | Köln | Cottbus | Jena

Uni Technics

Episodes Overview

Episode	Торіс	Content	Time (CET)
01	Rat Control in Drainage Systems	Environmental risks & application of waterproof baiting station in drainage systems	05 Nov. 21 10:00
02	Drainage System Inspection (Drone & Boat)	Innovative inspection of drainage systems using drone and camera-equipped boat	02 Dec. 21 10:00
03	Extraneous Water Entrance Prevention	Impacts of extraneous water & countermeasures?	13 Jan. 22 10:00
04	Indirect Discharger Cadaster Investigation	How to easily obtain full supervision over indirect discharger in your region?	03 Feb. 22 10:00
05	Live Flow Monitoring in Drainage Systems	Why is it so important to know the live-flow in our drainage system?	03 Mar. 22 10:00
06	Exhaust Air Treatment in Wastewater Management	Odour treatment through external equipments	07 Apr. 22 10:00
07	Sulfide Balance in Drainage Systems	Automatic calculation of sulfide balance & introduction to SULFIDUS	05 May 22 10:00
08	Special Episode: IFAT Munich 2022	What is new at the IFAT this year?	02 Jun. 22 10:00
Schwerin	Rostock Magdeburg Bamberg Stuttgart	Köln Cottbus Jena wv	ww.unitechnics.de

since 1990

ECHNICS

ENGINEERING

UNI

Schwerin | Rostock | Magdeburg | Bamberg | Stuttgart | Köln | Cottbus | Jena

Products and Services

Engineering Consulting

Indirect Discharger Investigation

Sewer System Inspection

Sulfide Balance SULFIDUS

Odour & Corrosion

Extraneous Water Seal

Dosing & Exhaust Air Treatment R

Rat Control

Schwerin | Rostock | Magdeburg | Bamberg | Stuttgart | Köln | Cottbus | Jena

UNI TECHNICS

Introduction to Odor Problem & Sulfide Balance

For more information:

> Wastewater-Talk Ep. 07 Sulfide Balance in Drainage Systems

on 05 May, 10:00 CET

- Contact us at <u>wastewater-talk@unitechnics.de</u>
- Check out our website: <u>Wastewater-Talk</u>

- Decreasing water consumption and wastewater generation
- Longer retention time in the sewer systems
- \succ Formation of malodour such as H₂S

Development of water consumption per capita Liter / (capita · day), Germany

- Ventilations holes on the manhole covers
- \succ Emission of H₂S from sewer systems
- Compaints from citizens

0

FID

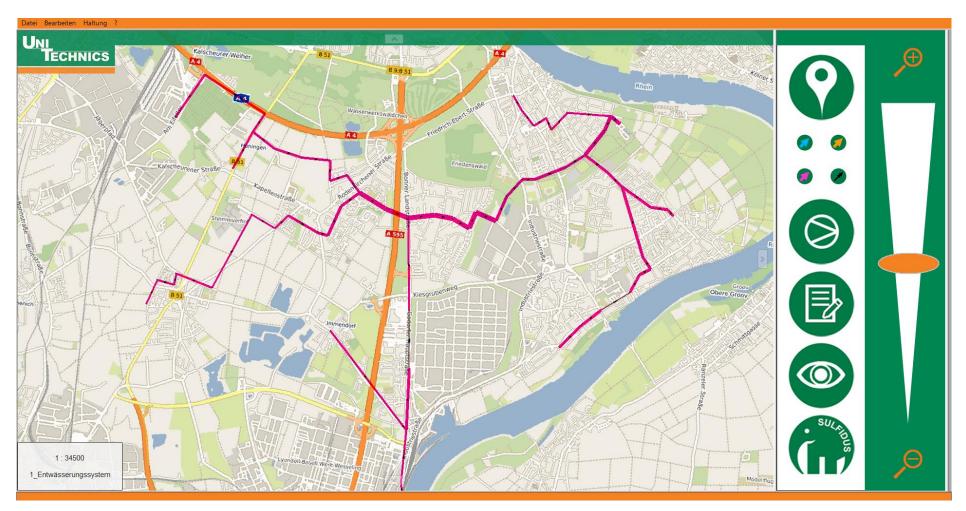
Since 2015

1997 - 2015

Sulf	idber	echnu	ıng un	d H2S-Emission									Anlage	2-1
Abw	asserü	iberleit	una KA	Waldhausen - Gla	shütte								Se	ite 1
Nr. I	Druckleit	tungsber	reich		Leitungs- länge	Dinnen	Abwasser menge Q		Sulfat	Abwasser temp.	- pH-Wert Abwasser	anfängl. Abwasser- alter	Sauersti gehal	
					[m]	[mm]	[m³/d]	[mg/l]	[mg/l]	[°C]	H	[h]	[mg/l]	1
Son	Sulfi	idbere	chnur	ng und H2S-Emi	ssion								An	lage 2-1
1				ng KA Waldhauser	ı - Glashü	tte								Seite 2
2	Nr. E	Druckleiti	ungsbere	ich	Dr	umen mittle uck- Fließ tung			e- bildung	Sulfid- zuleitung	gehalt fr gesamt	ulfid- pot. A acht meng 0,1 p	e bei Ha	mittlere Itungslänge olgekanal
3	Son	Sulfi	dbere	chnung und H2S	-Emissio	n								Anlage 2-1
Win		Abwa	sserüb	erleitung KA Waldh	ausen - G	ashütte								Seite 3
1	1	Nr. E	Druckleitu	ngsbereich		Länge Kanal v	Anzahl orhandene Haltungen [Stück]	rechn. Emission strecke [m]	gesamte 8- Kanal betroffer	zehrung	in Sulfid- ing gehalt	emittierte Sulfid- fracht [q/d]	ca. Abluft- menge be 0,1 ppm [m³/d] *)	
2	3	Son	Tabe						Bilanz,) I/m³ Fäll			
	Win	1			ge 2-2)		_							
	1	2		Leitungsat	schnitt			lfid- luna	Sulfid- fracht		Abluft- nge bei	rechn. Emisson		gesamter Kanal
	2	3						Ŭ	lacht	0,1	1 ppm	strecke		betroffen
	3	Win		Tabelle 3: Wesentliche Ergebnisse der H ₂ S-Bilanz, bei 0,10 l/m³ Fällmitteldosierung							ung -			
		1	1	(.	Anlage	2-3)								
		2	2	Leitur	ngsabscl	nnitt		Sulfid-			pot. Abluft			gesamter
		F						bildung	g fra	acht	menge be 0,1 ppm	i Emis stre		Kanal betroffen
		3	3					[mg/l]	[9	/d]	[m ³ /d] *)	[n		betromen
				Sommer 1 KA Waldh	ausen -	Hochp	unkt	7,91	1.1	053	7.017.000	gesch	DRL	geschl. DRI
				Druckleitur	g (Stat.	4+296 k	m)	1				Ŭ		•
			1	2 von Stat. 4 Glashütte S				0,00	1.0	053	7.017.000	1.9	00	ja
			2	3 Ortsnetz G	lashütte	S 01480	043	0,00	3	18	2.118.000	1.2	30	ja
				- Überleitur S 0148002		nler Sch	acht							
			3	Winter	5		-							
				1 KA Waldha Druckleitur				2,03	2	58	1.717.000	gesch	. DRL	geschl. DRI
				2 von Stat. 4 Glashütte S	+296 km	- Ortsn	etz	0,00	2	58	1.717.000	1.1	00	nein
				3 Ortsnetz G - Überleitur S 0148002	lashütte ngssamr	S 01480	043	0,00		0	0	C)	nein

What does SULFIDUS do?

- **Digitalization** of drainage systems
- **Simulation** of complex metabolic processes under different situations
- **Calculation** of O₂ consumption and H₂S formation
- Visualization of results for better understanding
- Identification of odour emission and biogenic corrosion development at early stage
- Optimization of drainage systems for operators and planners



Schwerin | Rostock | Magdeburg | Bamberg | Stuttgart | Köln | Cottbus | Jena

SULFIDUS Interface

Schwerin | Rostock | Magdeburg | Bamberg | Stuttgart | Köln | Cottbus | Jena

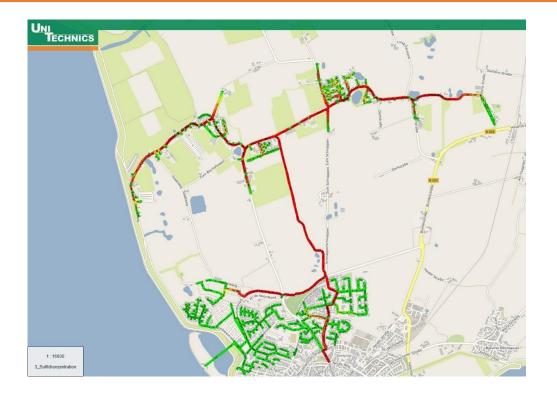
SULFIDUS software

Basic Data

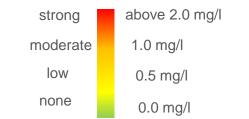
Abschnitt 32579233_5939735_32578801_5939668 -/7 (32579233_5939735-32578801_5939668) Schm 🗙				
Basisdaten Erweitert Berechnungsergebnisse				
Attribut	Wert			
length of sewer [m]	436.68			
hydraulic shape	0			
nominal pipe size (width) [mm]	129.84			
nominal pipe size (high) [mm]	125			
upper manhole level [m]	129.84			
lower manhole level [m]	126.00			
wastewater quantity [m³/d]	1663.08			
COD concentration [mg/l]	574.53			
sulfate concentration [mg/l]	51.53			
sulfide concentration [mg/l]	0.26			
temperature [°C]	18			
pH [-]	7.09			
dissolved oxygen [mg/l]	0			
dosage of iron (30% solution) [l/d]	0			
dosage of nitrate (35% solution) [I/d]	0			

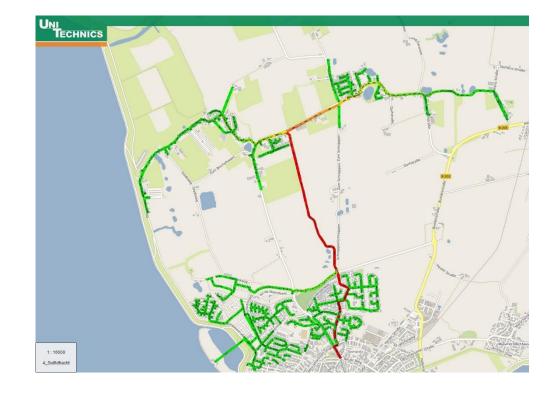
Additonal Data

Abschnitt 32579233_5939735_32578801_5939668 -/7 (32579233_5939735-32578801_5939668) Schm \times					
Basisdaten Erweitert Berechnungsergebnisse					
Attribut	Wert				
Name	32579233_5939735_3257				
name of start node	32579233_5939735 💌				
name of end node	32578801_5939668				
type of sewer	32578801_5939668 D				
type of drainage system	Schmutz 💌				
operating roughness [mm]	1.5				
slope [per thousand]	8.79				
secondary inflow_ wastewater quantity [m³/d]	0				
secondary inflow_ sulfide concentration [mg/l]	0				
secondary inflow_ dissolved oxygen [mg/l]	0				
secondary inflow_COD concentration [mg/l]	0				
secondary inflow_sulfate concentration [mg/l]	0				
secondary inflow_temperature [°C]	0				
secondary inflow_ pH [-]	0				
end node value for exhaust air	0				


Results

Abschnitt 32584780_5943337_32584674_5943254 -/25 (32584780_5943337-3258	84674_5943254) Sch 🗙
Basisdaten Erweitert Berechnungsergebnisse	
Attribut	Wert
start sulfide inflow [mg/l]	0
start total sulfide [mg/l]	0.01
start sulfide load [g/d]	8.45
end oxygen demand [mg/l]	0
sewer sulfide formation [mg/l]	0.01
end total sulfide [mg/l]	0.01
end sulfide load [g/d]	8.45
exhaust air volume for smell perception 0,1 ppm [m³/d]	94000


Schwerin | Rostock | Magdeburg | Bamberg | Stuttgart | Köln | Cottbus | Jena

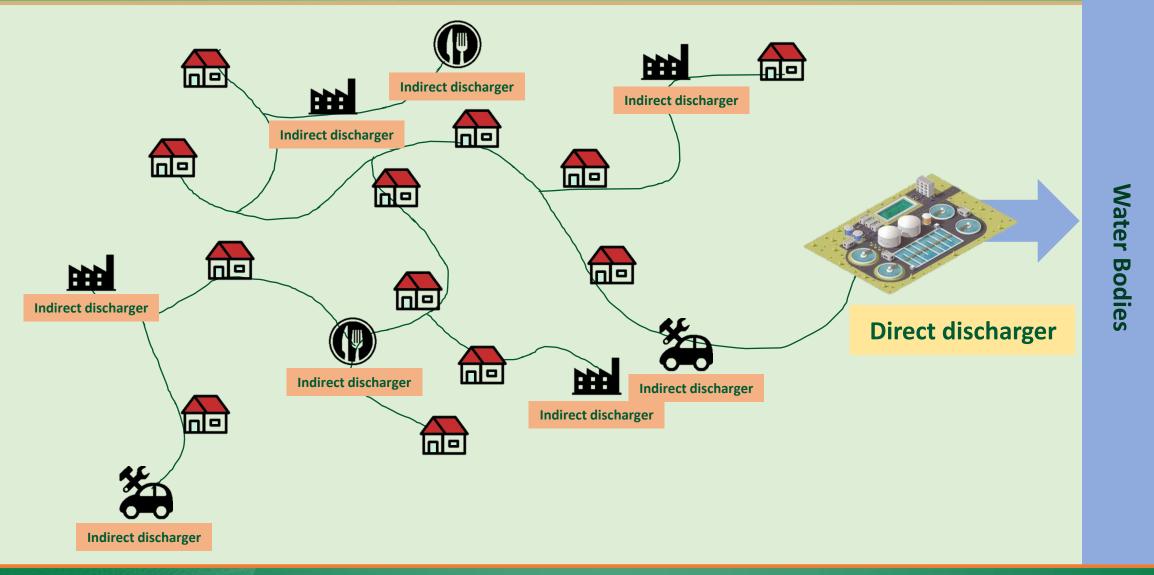


SULFIDUS software



Odour / Sulfide concentration

Corrosion / Sulfide load


Schwerin | Rostock | Magdeburg | Bamberg | Stuttgart | Köln | Cottbus | Jena

Indirect Discharger Investigation

Schwerin | Rostock | Magdeburg | Bamberg | Stuttgart | Köln | Cottbus | Jena

Schwerin | Rostock | Magdeburg | Bamberg | Stuttgart | Köln | Cottbus | Jena

Definition

Indirect Discharger

"An indirect discharger [..] is a commercial or industrial company or a comparable facility whose non-domestic waste water is discharged into a body of water via a public sewage system." (DWA-M 115-3, September 2019)

Indirect discharger to WWTP

- Operation optimization
- Tracking back to responsible dischargers in case of accidents/severe damage
- Protection of WWTP and drainage systems
- ✓ Protection of the general public from harm, danger and nuisance
- ✓ Protection of <u>personnel</u> at WWTP
- ✓ Protection of <u>existing drainage systems</u>
- ✓ Protection of the <u>functionality</u> of drainage systems
- ✓ Compliance with <u>law requirements</u> to indirect discharger
- ✓ Avoidance of <u>difficulties</u> in sludge treatment, disposal or recycling

Uni Technics

Law requirements in Germany

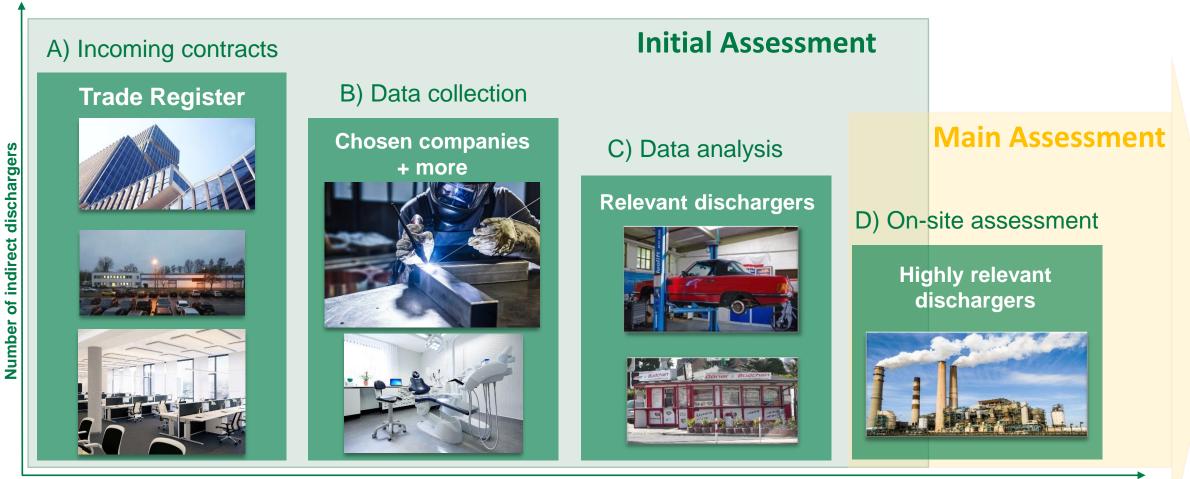
Federal Water Act (WHG) & Wastewater Ordinance (AbwV)

- Specification of quality and contents of the wastewater
- Limit values for certain ingredients/pollutants
- Necessity of creation of indirect discharger cadastre

- Each federal state has its own state Water Act
- The obligation to establish an indirect discharger cadastre is formulated directly / indirectly

Schwerin | Rostock | Magdeburg | Bamberg | Stuttgart | Köln | Cottbus | Jena

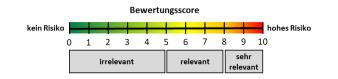
Indirect Discharger Cadastre


"An indirect discharger cadastre [..] is a register of all indirect dischargers and indirect discharges, including all information required for the proper operation of the public sewage system." (DWA-M 115-3, September 2019)

Web-based Indirect Discharger Cadastre

A register of indirect dischargers based on an online platform, that is digitally accessible at all times from different devices, so that no paperwork is needed for both the operator and the indirect dischargers.

Evaluation process of web-based indirect discharger cadastre



Evaluation process

Work flow of web-based indirect discharger cadastre

Data Collection	Data Evaluation	On-site Assessment	Maintenance & updating
Analysis of trade register	Plausibility check of the	Visit highly-relevant	• Upload of operation logs and
• Extension of the list with more	questionnaires	dischargers	evidence
relevant organizations	Evaluation of the	Evaluation according to	Reminders of planned actions
Mails with access code to	questionnaires according to		from operator
online platform	relevance to operator	Recommendation	
Support to inquiries	Visualization, customization		
Communicate with WWTP			

Schwerin | Rostock | Magdeburg | Bamberg | Stuttgart | Köln | Cottbus | Jena

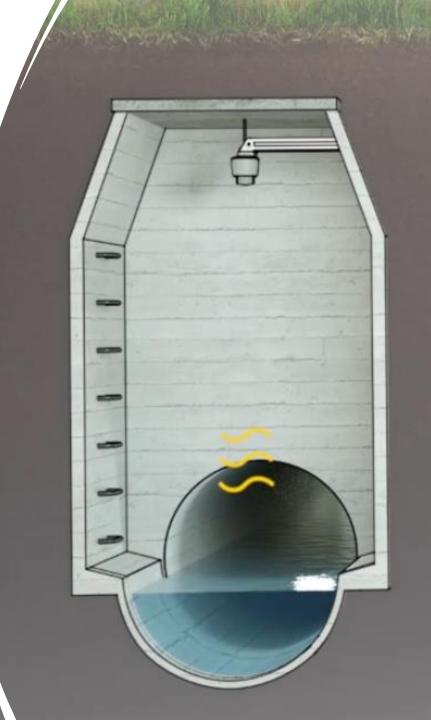
Insight of INDIKA questionnaire

To questionnaire:

Schwerin | Rostock | Magdeburg | Bamberg | Stuttgart | Köln | Cottbus | Jena

Discussion

How is indirect discharger


investigated in your country?

Schwerin | Rostock | Magdeburg | Bamberg | Stuttgart | Köln | Cottbus | Jena

Thank you!

See you next month on 3rd March

Ep. 05 Live Flow Monitoring

UNI TECHNICS INNOVATIONS FOR YOUR SEWAGE SYSTEM

ODOR | EXTRANEOUS WATER | ENGINEERING

UNITECHNICS KG

Hauptsitz

Werkstraße 717 • 19061 Schwerin Telefon +49 385 343371-20 • Fax +49 385 343371-31 info@unitechnics.de • www.unitechnics.de

Schwerin | Rostock | Magdeburg | Bamberg | Stuttgart | Köln | Cottbus | Jena